Q.1	$\begin{bmatrix} 6 & 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 & 5 \end{bmatrix}$
	Find the rank of (i) $\begin{vmatrix} 0 & 1 & 1 \\ 16 & 1 & -1 & 5 \end{vmatrix}$ (ii) $\begin{vmatrix} 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 \end{vmatrix}$
0.2	
Q.2	Reduce the following matrix to normal form and find its rank. $\begin{bmatrix} 2 & 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & -3 \end{bmatrix}$
	$\begin{vmatrix} 2 & 0 & 1 & 1 \\ 1 & -1 & -2 & -4 \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 2 & 0 \\ 4 & 1 & 0 & 2 \end{vmatrix}$
	(i) 3 1 3 -2 (ii) 0 3 1 4
	$\begin{bmatrix} 6 & 3 & 0 & -7 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 & 2 \end{bmatrix}$
Q.3	Find inverse of a matrix by Gauss Jordan Reduction method
	(i) $\begin{vmatrix} 3 & -1 & 1 \\ 1 & 2 & 1 \end{vmatrix}$ (ii) $\begin{vmatrix} 4 & 3 & 1 \\ 1 & 2 & 1 \end{vmatrix}$
0.4	$\begin{bmatrix} -1 & 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$
Q.4	Examine for consistency the following equations and solve them if they are consistent: 5x+3y+7z=4 $2x-y-z=7$
	(i) $3x + 26y + 2z = 9$ (ii) $3x - 2y - 2z = 10$
	$7x + 2y + 10z = 5 \qquad 12x - y - 7z = 19$
Q.5	Find the eigenvalues & eigenvectors of the matrix
	$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \end{bmatrix}$
	(i) 1 3 1 (ii) 0 8 0
Q.6	Evaluate (i) $\int_{-\infty}^{\pi} (1 + \cos \theta)^4 d\theta$ (ii) $\int_{-\infty}^{2\pi} \sin^6 x dx$
Q.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(i) Prove that $\int_{0}^{1} x \cos^{6} x dx = \frac{3\pi}{32}$ (ii) $\int_{0}^{1} x^{6} \sin^{-1} x dx = \frac{\pi}{14} - \frac{10}{245}$
Q.8	Evaluate (i) $\int_{0}^{\pi} \sin^2\theta (1 + \cos\theta)^4 d\theta$ (ii)
0.9	0 π/
Q.9	If $f_n = \int_{0}^{\frac{\pi}{4}} \tan^n x dx$ show that $f_n + f_{n-2} = \frac{1}{n-1}$ and the deduce the value of f_5 .
Q.10	If $f = \int_{-\infty}^{\pi/2} \cot^n x dx$, $(n > 2)$ show that $f + f_{-2} = \frac{1}{-1}$. Hence evaluate $\int_{-\infty}^{\pi/2} \cot^6 x dx$.
	$rac{J}{\pi/4}$ $n-1$ $rac{J}{\pi/4}$
Q.11	Find the length of the arc of the parabola $y^2 = 4ax$ from the vertex to one extremity of the
	latus rectum.
Q.12	$r = a(1 + \cos \theta)$
	Find the perimeter of the cardioid

Euch qu	
Q.13	Find the whole length of lemniscate $r^2 = a^2 \cos 2\theta$.
Q.14	Find the area between the curve $y^2(2a-x) = x^3$ and its asymptote.
Q.15	Find the area of the loop of the curve $x^3 + y^3 = 3axy$.
Q.16	Evaluate (i) $\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}$ (ii) $\lim_{x \to 0} \frac{x - \sin x}{x^3}$
Q.17	Evaluate (i) $\lim_{x \to 0} \frac{x - \tan x}{x^3}$ (ii) $\lim_{x \to 0} \frac{a^x - b^x}{x}$
Q.18	Evaluate (i) $\lim_{x \to 0} \log_{\tan x} \tan 2x$ (ii) $\lim_{x \to 0} \frac{\cot x}{\cot 2x}$
Q.19	Evaluate (i) $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\log x} \right)$ (ii) $\lim_{x \to 0} \left(\frac{1}{x^2} - \cot^2 x \right)$
Q.20	If $y = \frac{x^4}{(x-1)(x-2)}$, find y_n .
Q.21	Find the n^{th} derivative of (i) $\tan^{-1}\left(\frac{1-x}{1+x}\right)$ (ii) $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$
Q.22	If $y = a\cos(\log x) + b\sin(\log x)$, prove that $x^2 y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.
Q.23	If $y = \cot^{-1} x$ prove that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0.$
Q.24	If $y = (x^2 - 1)^n$, prove that $(x^2 - 1)y_{n+2} + 2xy_{n+1} - n(n + 1)y_n = 0.$
Q.25	If $y = e^{m\cos^{-1}x}$ show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0.$
Q.26	Expand $f(x) = \sec x$ in power of x up to x^4 by maclaurin's series.
Q.27	Prove that $\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots\right)$
Q.28	Test the convergence of the Sequences $\frac{\ln n}{n}, n^{\frac{1}{n}}$

Q.29	Find the sum of the series if it converges.
	(i) $\frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} + \dots + \frac{1}{(n+1)(n+2)} + \dots$
	(ii) $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n-1}}{2^{n-1}} + \dots$
Q.30	Test the convergence of the series
	$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}, \sum_{n=1}^{\infty} \frac{1}{1 + 2 + 3 + 4 + \dots + n}$
Q.31	Discuss the convergence of $\sum_{n=1}^{\infty} \left(\frac{n}{3n+1}\right)^n, \sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^n$
Q.32	Discuss the convergence of p-series.
Q.33	Discuss the convergence of
	(a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ (b) $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^{1.1}}$
Q.34	Discuss the convergence of
	(a) $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^n}$ (b) $\sum_{n=1}^{\infty} n! e^{-n}$ (c) $\sum_{n=1}^{\infty} \frac{n}{(\ln n)^n}$
Q.35	Discuss the convergence of
	(a) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{10}\right)^n$
Q.36	Verify that $w_{xy} = w_{yx}$ Where $w = e^x + x \ln y + y \ln x$, $w = \sin x \cdot \cos y + \cos x \cdot \sin y$
	,
Q.37	Express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as function of $u = v$ both by using the Chain Rule
	$z = 4e^{x} \ln y, x = \ln(u \cos v), y = u \sin v$

Q.38	Express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as function of u and both by using the Chain Rule
	$z = \tan^{-1}\left(\frac{x}{y}\right), x = u\cos v, y = u\sin v$
Q.39	Express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as function of u and v both by using the Chain Rule
	w = xy + yz + xz, x = u + v, y = u - v, z = uv; (u, v) = (1/2, 1)
Q.40	Find the tangent plane normal line at the point P_0 on the given surfaces.
	$z^{2}-2x^{2}-2y^{2}-12=0$ $P_{0}(1,-1,4)$
	$x^{2} + 2xy - y^{2} + z^{2} = 7$ $P_{0}(1, -1, 3)$
Q.41	Find the tangent plane normal line at the point $P_{ m 0}$ on the given surface.
	$\cos \pi x - x^2 y + e^{xz} + yz = 4 \qquad P_0(0,1,2)$
Q.42	Find an equation for the plane that is tangent to the given surface at the given point.
	$z = \ln(x^2 + y^2),$ (1,0,0)
	$z = e^{-(x^2 + y^2)},$ (0,0,1)
Q.43	The volume $V = \pi r^2 h$ of a right circular cylinder is to be calculated from measured values of r and h . Suppose that r is measured with an error of no more than 2% and h with an error of no more than 0.5%. Estimate the resulting possible percentage error in the calculation of V .
Q.44	Find the linearization $L(x, y)$ of the function at each point.
	f(x, y) = 3x - 4y + 5 at (1,1)
	$f(x, y) = e^x \cos y at (0, \pi/2)$
Q.45	Find the local extreme values of the function $f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4$
Q.46	Find local maxima & local minima and saddle points of the function
	$f(x, y) = x^{2} + xy + 3x + 2y + 5$
Q.47	Find local maxima & local minima and saddle points of the function

	$f(x, y) = x^2 - y^2 - 2x + 4y + 6$
Q.48	Find local maxima & local minima and saddle points of the function $f(x, y) = x^2 + 2xy$
Q.49	(a) Express the following complex numbers into Polar form a) 1+v3i b)1+v2+i
	(b) If x and y are real ,solve the following equation:
	$\frac{iy}{ix+1} - \frac{3y+4i}{3x+y} = 0$
Q.50	Simplify $\frac{(\cos 3\theta + i\sin 3\theta)^4 (\cos 4\theta - i\sin 4\theta)^5}{(\cos 4\theta + i\sin 4\theta)^3 (\cos 5\theta + i\sin 5\theta)^{-4}}$
	Prove that $\left(\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right)^4 = \cos 8\theta + i\sin 8\theta$
Q.51	Prove that $\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right)+i\sin\left(\frac{n\pi}{2}-n\theta\right)$
Q.52	Prove that n th roots of unity form a G.P. and sum of the roots is zero and product of the roots is (-1) ⁿ⁻¹
Q.53	Solve the equations $x^7+x^4+x^3+1=0$, $x^4-x^3+x^2-x+1=0$ using De Moivre's theorem.
Q.54	(a) Find the solution to the differential equation $x^2 \frac{dy}{dx} = (x+1)(y+1)$ given that $y = 2e$
	when $x = 1$
	(b) Show that y=acosx+sinx is asolution of $cosx \frac{dy}{dx} + y \sin x = 1$
Q.55	(a) Solve: $\frac{dy}{dx} + 2xy = 3x^2$, (b) Solve: $(3x - 2)\frac{dy}{dx} = y^2$
Q.56	Solve $(1 + e^{\frac{x}{y}})dx + e^{\frac{x}{y}}(1 - \frac{x}{y})dy = 0$
Q.57	(a) Solve : $\frac{dy}{dx} + 3y = 2x - 1$, (b) Solve $x \frac{dy}{dx} + 2y = \log x$
Q.58	(a) Evaluate $\int_{0}^{\infty} x^{3/2} e^{-x} dx$
	(b) Evaluate $_{0}\int^{1} x^{4} (1-x)^{3} dx$

Q.59	Find Γ(-½)